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Shift invariance and surface growth 
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Received 14 December 1993 

Abstract. The invariance of equations for self-afiine surface growth toreparametrization under 
the Abelian g o u p  of shift transformations h ( x ,  t )  + h(x.  f )  + I is used to bound the form of 
nonlinear terms and related kinetic coefficients in relaxational surface gmwth equations. For 
conserved growth small but relevant diffusive terms second-order in the driving can always be 
expected. It is also shown ?hat the asymptotic growth distributions in d =- 2 can be expected to 
be skew and are not derivable from a Hamiltonian description. 

1. Introduction 

Interest in surface growth far from thermal equilibrium [l, 21 and the scaling behaviour 
of the resulting self-affine surfaces has spread to such varied fields as thin film growth by 
molecular beam epitaxy [3-51; fluid dynamics at both low Reynolds numbers, such as those 
observed at the interface of fluid flow in porous media [6,7.], and at high Reynolds numbers 
such the boundary layers of turbulence [7]; propagating flame fronts in combustion [S, 91: 
and the interfaces related to self-organized critical phenomena [lo] such as the surface 
structure of sandpiles [ l l ]  and other granular flows. All these phenomena are nonlinear, 
anisotropic, and involve the interaction of a large number of degrees of freedom. The main 
tools developed to study their dynamics and conformation have been simulations of simple 
models, together with the derivation and analysis of local Langevin-like equations believed 
to incorporate the symmetries and conservation laws of the long-wavelength physics. 

The most renowned of such equations for surface growth is probably the Kardar-Parisi- 
Zhang (WZ) equation [12] describing the non-conserved height fluctuations h ( z ,  t )  in an 
interface without overhangs growing with a velocity A normal to the interface 

ahfat = vvZh + i / ~ ( v h ) ~  + V ( X ,  t )  (1) 
where ( ~ ( z ,  t)q(z’, t‘))  = Q 8 ( z  - z’)s(t - t’). This is, however, but one example in a 
veritable zoo of equations used to describe different aspects of surface growth including 
the Sun-Guo-Grant (SGG) equation [I31 for the surface height of a driven interface with a 
conservation law 

ahfat = -vZ[vvZh + ~ / 2 ( v h ) ~ ]  + q(z, t )  

ahlat = -D4V4h + h4V2(Vh)’ + q(x, t )  

(2) 
where (q(z, t)q(z’, t’)) = -QV2S(z - z’)8(t - t’): the fourth-order Villain-Wolf [3, 41, 
and Lai-Das S m a  [5] (VWLS) equation ~ ~ 

(3) 
with (q(z, t)q(z‘, t’)) = Q 8 ( z  - z’)6(t -t‘)~believed to describe relaxation in MBE growth 
via surface diffusion; the deterministic Kuramotc-Sivashinsky (KS) equation [S, 91 

ahfat = D2V’h - D4V4h + A/Z(Vh)’ (4) 
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which, though having growth terms in common with both the KPz and V W U  equations 
is fundamentally different from both as the diffusion coefficient 0 2  < 0 is negative-this 
ensures the existence, without forcing, of chaotic fluctuations capable of describing the 
intrinsic instabilities in flame propagation; and the Nozieres-Gallet (NG) equation [14] 

ahiat  = U + vV2h + y sin (zzhla) + V(X, t) (5) 
sometimes modified by the nonlinear term [15] h/2(Vh)2 ,  and used to describe dynamic 
roughening of layered growth. 

These equations have self-affine solutions which obey a form of dynamic scaling: [I61 

where W ( L ,  t) is a measure of the width of the surface at time I on a length scale L, and 
tL - LL with z = alp. As these nonlinear equations are in general insoluble, however, 
most of the efforts have involved determining the scaling exponents using methods such 
as the dynamic renormalization group [17], direct numerical integration [18, 191. or non- 
equilibrium scaling arguments [ZO]. 

The question arises, given this catalogue, what constraints exist on the existence of 
higher-order terms in such Langevin equations, and what are the magnitudes of their 
associated kinetic coefficients? This is important in real experiments where the asymptotic 
regimes lie beyond experimental observation. Here we show that the demand that the 
equations of motion for self-affine surface growth be invariant under the reparametrization 

(7) 
where 1 is an arbitary global displacement of the whole surface, greatly constrain the form 
these terms can take. The reason is that these shifts form a group which together with the 
demand that any fluctuations be relaxational is sufficient to specify the allowed growth law. 

2. Global shift invariance and surface growth 

In this section we examine the constraints that global shift invariance puts on the form 
of Langevin equations that describe surface growth obeying non-conserved relaxational 
dynamics, conserved relaxational dynamics, and layered dynamics. 

h(r, I) + h ( z ,  1) + 1 

2.1. Non-conserved dynamics 

Consider a non-conserved relaxational dynamics of the form 

ahiat  = -raF/ah + ?(x7 t) 

where r is the relaxation rate, the driving force has the correlation (~(i, t)q(r', t')) = 
Q&(e - r')&(t - r'), and the free energy is given by F = dzd-'F(h, V h ) .  Equation (8) 
which is model A of Hohenberg and Halperin [21] is relaxational as dF/dt = 
-r Jdsd-'(SF/8h)*, and therefore the free energy is a Lyapunov function controlling the 
global stability. In addition (8) yields the asymptotic equilibrium probability distribution 
given by the functional P({h))  = 2-' exp [-BF({h))J.  where 2 = J'Dh exp [ -pF((h))J ,  
and (h) is used to represent a configuration of the entire surface. The fluctuation-dissipation 
theorem is obeyed by such growth in the form p = W / Q .  

The additional demand of shift incariance implies, however, as the transport coefficient 
r is a constant, that the free energy density cannot depend explicitly on h but must be a scalar 
function of gradients of the height fluctuation F((Vh)*) .  To lowest order in the expansion 



Shij? invariance and surface growth 2271 

of the free energy density we regain the capillary Hamiltonian F = (u/2)~dzd-’(Vh)’, 
with the resulting dynamics given by the diffusion equation. 

Equation (8) is not, however, the most general form for a non-conserved relaxational 
dynamics. Consider allowing the relaxation rate to be an explicit local function of the 
surface configuration r (h ,  Vh). For such models provided r (h ,  Vh) 2 0, the free energy 
would still retain its role as a Lyapunov function, but the asymptotic probability distribution 
would no longer be governed by the free energy alone-it would take up a form also 
controlled by the configurationally dependent relaxation rate. 

It would appear that we have broken our own demand for shift invariance with’this 
generalization. The equations of motion will still, however, remain invariant provided that 
the free energy density is also generalized to allow for a specific dependence on the surface 
height F(h, Vh), and the new free energy density 3 and the relaxation rate r transform 
in pairs as 

F(h + i ,  v h )  = ~ ( i ) ~ ( h ,  v h )  (9) 

under a shift 1. The renormalization due to the shifts form an Abelian group obeying 
K( l )K( l ’ )  = K ( l  + I‘) which have the solution K(1) = expsl where s is the generator of 
the group, and consequently for shift invariance we require the the free energy density and 
relaxation rate have the related forms 

(10) 

r ( h  + 1, v h )  = K(i)-lr(h, v h )  

F(h, Vh)  = exp (sh)FI((Vh)’) r(h,  Vh)  = exp (-sh)rl((Vh)’). 

The equations of motion defined by (8) and (10) are thus still local, shift invariant, and 
relaxational, but the price to be paid is that the ‘free energy density’ and ‘relaxation rate’ 
have lost their individual identities-if each term is examined individually then it does not 
make sense that they should depend on the local value of h(a ,  t )  but should depend only 
on its gradients. The point, however, is that when taken together the resulting dynamics 
does indeed remain invariant as can be seen by direct substitution of (10) into (8) which 
yields the general form for equations of motion for surface growth obeying non-conserved 
relaxational dynamics 

(11) 
In (11) we have used the notation $ = UI/d(Vh)’, while 6 = dZF1/d((Vh)’)*. 

If we now expand F1((Vh)’) = F1o +FI1(Vh)’ + . . and rl((Vh)’) = rlo + . . . in 
(11) in powers of (Vh)’, then to linear order in the expansion we recover the KFZ equation. 
Higher powers F1((Vh)’) = 3 1 0 + F l l ( V h ) Z + F ~ ~ ( V h ) 4 ,  rl((Vh)’) = r lo+r l l (Vh)’  
will renormalize both transport coefficients into functions of the curvature A((Vh)’) and 
u((Vh)’) and generate new terms, which to next lowest order result in the equation 

(12) 

ah/at = r1[z7;v2h + z ~ ; v ( ( v h ) ~ ) . v h ]  - srlvl - Z $ ( V ~ ) ~ I  + V(X, r )  . 

ahjar = U[V% + ~ / z ( v h ) ~ i  + g [ 3 ~ ( v h ) ~  + ~ v . [ ( v ~ ) ~ v ~ I I  + V(X, t )  . 
Note that we have not only recovered the Kpz equation as the relevant asymptotic terms 
in an expansion of the Langevin equation in powers of s, but the driving velocity A = su 
is directly proportional to the shift invariance generator; or conversely the driving velocity 
can be used to find the magnitude of the generator directly as s = hjv .  The higher order 
kinetic coefficients will also be proportional to various powers of s and their magnitudes 
can therefore also be estimated. 

2.2. Conserved dynamics 

If the height of the interface h(x,  t )  is a locally conserved order parameter we can expect 
its rate of growth to be controlled by an equation of continuity ah/& = -V j, and if the 
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current is diffusive then the growth will be controlled by a nonlinear diffusion equation (a 
generalization of model B of Hohenberg and Halperin [21]) of motion of the form 

ah/at = v . [r(h, v ~ ) v M / ~ ~ I  + V(Z .  t ) .  (13) 

Once again we demand shift invariance for the conserved growth equation and once again 
this leads to constraints on the relationship between the fiee energy and a transport coefficient 
given by (9). The resulting equation of motion for conserved dynamics (dropping all terms 
involving more than fourth-order derivatives) is of the form 

ahiat = y2s2v2h - 04{04h + ( ~ / ~ ) [ v ~ ( v h ) ~  + 2v.[vZhvh]i 

+(2/2)V.[(Vh)2VhIl+ V Q ,  t ) .  (14) 

Note the relationships the shift invariance introduces among the various terms generated 
by the non-equilibium driving. For example it appears that at second order in the driving sz a 
diffusive term with diffusion constant & = y2sz is generated. This term will always appear 
even for a constant free energy (as y2 c( F~o), and it may be the cause of the Edwards- 
Wilkinson-like regime [22] observed by Kessler er al [23] in a model for molecular beam 
epitaxy and surface diffusion. Also note that the magnitude of the coefficients for the 
nonlinear terms are proportional to the equilibrium fourth-order diffusion coefficient 0 4 .  A 
comparison of (14) with both the sGG and VWLS equations, which differ mainly in whether 
the noise fluctuations are conserved or not, appears to suggest that both these equations need 
to be modified to lowest nonlinear order if global shift invariance is a required symmetry 
of the dynamics-for the nonlinear term D4sV.[V2hVh] appears in addition to the term 
( 0 4 ~ / 2 ) V ~ ( V h ) ~  and they are both of equal relevance fiom a scaling viewpoint. 

2.3. Layered and generalized dynamics 

Our approach can be extended to generate growth equations with lower symmetry 
requirements. One particularly important field where this lower symmetry requirement 
holds may be in studies of layered growth. In this situation, it is to be expected that the 
equations of motion will only be invariant under shifts of a specified length scale U. In this 
case we may use Bloch’s theorem to demand 

~ ( h ,  ~ h )  = exp (sh)r,(h)FI((Vh)’) r ( h ,  ~ h )  = exp(-sh)Tz(h)rl((trh)2) (15) 

where r, (h + a )  = C(h)  and G(h + a) = E(h) are periodic functions of the required 
periodicity. The additional demand that purely diffusive motion is unaffected by the layering 
leads to the additional requirement Z ( h )  = Tz(h)-’ = T(h)  and (11) is transformed into 

ah/at = -r,{(s+ (dInT/dh))[Fl -2<(Vh)2] -2<Vzh 

-2&V[(Vh)~].Vh) + q(z, t ) .  (16) 

In consequence, the KPZ equation is transformed into a generalization of the Nozieres-Gallet 
(NG) equation [14] 

ah/at = ~ ( h )  + UV% + ( . x (h ) /~ ) (vh)~  + V ( Z ,  t )  (17) 

where both v(h + a )  = v(h) and l ( h  + a )  = I (h)  are proportional periodic functions of a 
with the amplitude of the periodic fluctuation to the average driving velocity being of order 
(as)-’, and therefore the periodic variations in layered growth being most observable at 
small driving rates. 
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More general shift invariant relaxational growth can be found by allowing for higher 
derivative dependence for both the free energy density and its associated relaxation rate 

3 ( h ,  V h ,  V’h) = exp (sh)31((Vh)’, V’h) 

r ( h ,  V h ,  V’h) = exp (sh)r,((Vh)’. V2h)  . (18) 

The V2h dependence of the free energy in (18) will generate terms such as the V4h term in 
the KurumotoSivashinsky equation. For example if the free energy density is a function 
of V2h alone, h ( V Z h ) ,  then to lowest nonlinear order the KuramotoSivashinshy equation 
will be directly generated and keeping one higher set of nonlinear terms we find 

ah/at = yzsV’h + D4V4h + yZs’(Vh)’ 
+ 0 4 [ ( 3 ~ / 2 ) ( V ’ h ) ~  + sZ(Vh)’V2h + 2sVh.V’VhI~ (19) 

where the s dependence of the various coefficients has been made explicit. We can recover 
the correct sign of the various kinetic coefficients in (4) if yz > 0 but D4 < 0 and s < 0. 
The contribution of the nonlinear terms to the dynamics is interesting for despite the fact 
that as L -+ 00 the term y2s2(Vh)’ is dominant over the other nonlinearities (provided 
the exDonent N e 1). the sz devendence of the kinetic coefficient suggests that at small ,. -- 
driving rates there may be a cross-over from a regime dominated by the nonlinear terms 
D4~[(3/2)(0’h)’ + 2Vh.V’VhI. 

3. Shift invariance and skewness 

As the shift invariance generator s has dimensions of an inverse length scale, the question 
remains as to whether this length scale can be directly extracted from a single image of a 
growing surface? This seems unlikely, anymore than the Reynolds number can be extracted 
from a single image of a flow field. The shift invariance generator s is, however, closely 
related to surface skewness, and we can estimate this length scale as the magnitude of the 
surface fluctuations s-l - h(tshw) at early times t s h  at which the skewness of the surface 
fluctuations reaches its maximum value. 

This can be seen by examining (11). If only the first term on the right-hand side 
of (11) existed then the equation of motion would be invariant under the operation 
h -+ -h; the second term proportional to s breaks this symmetry. The magnitude of 
the second to first term at early times t is w sh,. Thus the second term can start 
to significantly influence surface growth when sht w 1. Surface skewness S(t,  L) = 
( ( h ( z ~ +  L, t ) - h ( r ,  t ) ) 3 ) / ( ( h ( z  + L, t ) - h ( r ,  t ) )2)3/2 can thus be expected to grow rapidly 
from zero S(0, L )  = 0 for times t < Ckew - s-’/P. At long times t >> rL the asymptotic 
fluctuations set in where skewness may or may not exist depending on the properties of the 
asymptotic fluctuations. 

Indeed, there is plenty of evidence for the KPZ equation 124-261 in d = 2 dimensions 
(here we use the convention that the surface on which growth is occuring has dimension 
(d - 1)) that in the transient regime the skewness S(t. L )  rapidly rises at very early times, 
reaches a maximum at some time f < t~ (which we identify with f,kew(s)). and then decays 
again. For times t >> t ~ ,  because of the Gaussian nature of the asymptotic fluctuations in 
d = 2, the skewness must disappear S(w, L) = 0. These arguments suggest any scaling 
form for the skewness involves two timescales S(t, L) = f sbw( t / t ‘ ,  t / t s b ( s ) )  rather than 
the simpler form S(t, L )  = f k e w ( t / t L ) .  
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To examine skewness in the asymptotic fluctuations of non-conserved dynamics it is 
useful to study the Fokker-Planck equation related to (8) 

a~((h}, t ) /a t  = 1 ~~-ls/shirsF/shP((h}, t) + ( Q / z ) s P ( { ~ ) ,  t p h )  

jded-'S/Sh[rSFIShP((h)) + (Q/Z)SP((h])/Sh} = 0. 

(20) 

where P((h) ,  r) is the probability of observing the surface in configuration {h ]  at time t. 
Equation (20) has the equilibrium form 

(21) 

In d = 2 dimensions, even in the presence of the nonlinear symmetry breaking terms 
in the KPZ equation, the asymptotic fluctuations remain symmetric and indeed Gaussian 
P((h})  = Z-' exp -B ~&r(&/&r)* because the additional nonlinear contributions vanish 
on integration by parts. In general, however, (21) will only have a Hamiltionian 
asymptotic fluctuations P ( ( h ) )  = Z-lexp -H((h) )  if the related functional equation 
GH/Sh = (2/Q)rSF/Sh has a solution. Even €or natural boundary conditions P -+ 0 
as h(x,  t )  -+ zkw, however, it is not true in general that this equation can be solved; and 
in the present case it is easy to show using (10) that S2H/Sh(x)Sh(z') # SzH/Sh(z')6h(x) 
and consequently no Hamiltonian form exists. It is also easy to see that no new free 

'energy Fnew((Vh)2, s) and constant kinetic coefficient rn&) related to the old parameters 
by r(h)SF/Sh = r,,SF.,,/Sh can exist which would allow a Hamiltonian asymptotic 
distribution because the left-hand side of this equation is not invariant under the operation 
h + -h for all s # 0, while the right-hand side is. A d u e t  consequence is that the 
asymptotic height fluctuations for non-equilibrium surface growth in higher dimensions 
d > 2 can be expected to be fundamentally different from those observed in equilibrium 
growth or in d = 2 dimensions. 

Thus despite the fact that the free energy, F ,  drives the system to some asymptotic 
distribution, this same free energy does not control the asymptotic fluctuations alone, but 
they are also intimately dependent on the nonlinear form of the relaxation rate. One 
consequence is that the fluctuation-dissipation theorem in the form r = 288 breaks down. 
It is possible, however, to recover an approximate equilibrium form for the fluctuations 
simply by replacing the exact relaxation rate r(h, Vh) = exp(-sh)rl((Vh)') by the 
simple but non-unique approximation r ( (h),  0) = exp ( -s (h) ) r I  (0). where we argue that at 
small wavelengths k any gradient dependence (there may be none) of the kinetic coefficient 
disappears as (Vhl - k'*, and the local height h(x) is replaced by its global average 
(h) = L-(d-l)  1 d&'h(z). In this w e  we find that the asymptotic fluctuations obey the 
functional expression 

P({h})  = z-'exp[-(2rl(O)/Q)jd~~-'exp[s(~ - (h))lF~((Vh)*)l. (22) 

It is interesting to note that this asymptotic distribution is skew for all s # 0, a result that 
is well known in the study of the fluctuations in both the energies of directed polymers in 
random media and the height fluctuations in surface growth 127, 281 in d = 2 dimensions in 
the transient regime, but here we argue that even in the asymptotic regime such skewness 
should be visible in higher dimensions. 

4. Discussion 

In conclusion, it appears, as though shift invariance combined with other known conservation 
laws is a powerful tool for generating the possible kinematics of interfacial growth, and 
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finding dependence on driving of the various nonlinear transport coefficients. In lowest 
nonlinear order in the gradients the equations of motion derived agree with the surface 
growth equations derived phenomenologically by assuming a constant growth velocity h 
normal to the interface for non-conserved dynamics-the KPZ equation. For conserved 
growth the situation is more complex. It appears that small diffusive terms are always 
generated of magnitude s2. In addition, forms valid to all powers in the nonlinear gradients 
have been derived, which, however, disagree with the assumption of a constant growth 
velocity normal to the interface. 

Three direct consequences of global shift invariance appear: first, the generator of the 
group s has units of an inverse length scale so that s-' h(tskw) defines the height 
fluctuations and the timescale at which skewness is maximum at early times. Second, we 
argue that for all s # 0 there is no Hamiltonian formulation for the asymptotic distribution 
in d z 2 to which these driven surfaces tend at long times t >> e;  but whatever their form, 
they can be expected to be skew; third, the magnitude of the shift invariance generator s 
can be used to estimate whether a particular higher-order term needs to be included in the 
Langevin equation describing a real rough surface. 
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